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A B S T R A C T

Accurate geolocation using Global Navigation Satellite Systems (GNSS) is essential for safe and long-range
unmanned aerial vehicles (UAVs) flights. However, GNSS systems are susceptible to blockages, jamming, and
spoofing attacks. Localization using onboard cameras and satellite images provides a promising solution for
UAVs operating in GNSS-denied environments. In this paper, we developed a novel UAV visual localization
system for GNSS-denied situations, both day and night, that integrates image matching, visual odometry
(VO), and terrain-weighted constraint optimization. First, an effective map management strategy is designed
for satellite image chunking, real-time scheduling, and merging. Then, a 2D–3D geo-registration method,
combining Bidirectional Homologous Points Search, is introduced to obtain accurate 3D virtual control points
for UAV absolute localization. Lastly, a position estimation and optimization method, integrating the sliding
window with terrain weighting constraints, is proposed to control position error accumulation and reduce
position drift. Twenty experiments were conducted in typical and complex scenarios to validate our system’s
resilience to altitude changes, trajectory variations, and rolling terrain. Our system demonstrated drift-free
and viewpoint-robust, maintaining stability even in feature-poor environments and seasonal variations. It
does not require loop closure, allowing for re-localization after positioning failures. Additionally, we utilized
thermal infrared images to demonstrate the system’s performance in night-time conditions. With a Mean
Absolute Error of less than 7 m, it can be a powerful complement to GNSS in the event of GNSS-Denied
environments. All demonstration videos of our system can be found at https://github.com/YFS90/GNSS-
Denied-UAV-Geolocalization.
1. Introduction

Unmanned aerial vehicles (UAVs) have become increasingly indis-
pensable in various applications, from agriculture to military surveil-
lance. Most UAVs depend on integrating Global Navigation Satellite
Systems (GNSS) and Inertial Navigation Systems (INS) to ensure precise
positioning and navigation, which is essential for executing complex
tasks. Although GNSS is beneficial, it is vulnerable to challenges such
as signal blockages, intentional jamming, and spoofing attacks, which
can severely reduce navigation accuracy or cause mission failure. Ad-
ditionally, the inertial measurement units (IMUs) within INS tend to
accumulate errors over time due to sensor drift, rendering INS in-
creasingly unreliable for prolonged navigation without correction from
external references. Therefore, the ability of UAVs to determine their
position in GNSS-denied situations is crucial for ensuring safe flight and
mission execution.

Vision-based localization methods can be an alternative in GNSS-
denied environments because cameras act as passive sensors, avoid
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blockage or interference, and offer low SWaP-C (Size, Weight, Power,
and Cost) (Couturier and Akhloufi, 2021). Recent advancements in
visual-inertial odometry (VIO) and Simultaneous Localization and Map-
ping (SLAM) (Luo et al., 2023) demonstrate the potential for au-
tonomous robots to achieve accurate localization in GNSS-denied en-
vironments. However, SLAM suffers from cumulative drift, particularly
over long distances, which diminishes its effectiveness in long-range
UAV operations. Although techniques such as loop closure can mitigate
drift, they can only partially reduce its effects and cannot eliminate
positional errors entirely. Furthermore, SLAM systems are inherently
limited, and without external georeferencing, they cannot generate
earth-fixed coordinates, restricting their use in applications requiring
absolute positional accuracy (He et al., 2023). Another approach for
localization in GNSS-denied environments involves matching UAV im-
ages with satellite images (Kinnari et al., 2021, 2022) or retrieving
a satellite patch corresponding to a query UAV frame (Hu et al.,
2024). The UAV–satellite image matching method outputs geographical
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coordinates and offers the advantage of drift-free position estimation.
However, most existing work focuses on top-down view image match-
ing or orthorectifying UAV images with an IMU (Kinnari et al., 2021;
Bianchi and Barfoot, 2021; Mei et al., 2023). Due to the influence of
airflow, it is challenging for the UAV to maintain a downward-facing
during flight. Moreover, the positioning accuracy of this method is
limited by the quality of the matching process. Factors such as image
rotation, viewing angle discrepancies, and seasonal changes must be ad-
dressed. Additionally, it is challenging to perform re-localization after
positioning failure in matching-based localization methods (Qiu et al.,
2024). The retrieval-based method retrieves image patches similar to
he query with the highest similarity from large-scale satellite images

and obtains the corresponding geographical information. However, the
problem is more than a one-to-all retrieval task in real-world scenar-
os. The performance of this approach is affected by the density and
istribution of satellite images in the database, potentially resulting in

significant errors (Hu et al., 2024). Moreover, the challenge of GNSS-
enied positioning at night is an urgent problem that needs to be
ddressed and has seldom been considered in previous work.

In this paper, we investigate and develop a UAV visual localization
ystem that integrates image matching, visual odometry, and terrain-
onstrained optimization for GNSS-denied environments, both day and
ight. The system matches UAV video frames or images with satellite
mages, obtains precise virtual 3D control points through feature associ-
tion for rough positioning, estimates the UAV pose using visual odom-
try and improves localization accuracy through terrain constraint
ptimization. The main contributions of this paper are as follows:

(1) We have designed and implemented a novel visual localiza-
tion system that utilizes geo-referenced data, including publicly
accessible satellite images and elevation data, for precise 3D
positioning of UAVs in GNSS-denied environments. The system
operates without the need for the UAV’s camera to capture
downward-facing photos, nor does it require an IMU or altime-
ter. It only requires the initial position of the UAV to achieve
precise visual positioning in high-altitude scenarios ranging from
150 to 1500 m, over distances of up to 20 km, and across
coverage areas of approximately 10 km2.

(2) We introduce a visual odometry positioning method that com-
bines image matching and terrain-weighted constraint optimiza-
tion. This method demonstrates resilience to altitude changes,
trajectory shapes, and rolling terrain. It is drift-free and
viewpoint-robust, maintaining stability even in feature-poor en-
vironments and seasonal variations. Additionally, it does not
need loop closure, allowing for relocation after positioning fail-
ure. Furthermore, we validated the system’s nighttime localiza-
tion capability.

(3) Twenty sets of real-world data covering plains, hilly terrain, and
urban and rural areas are employed to comprehensively validate
the system’s robustness and accuracy under complex scenarios.

The manuscript is organized as follows: Section 2 gives the related
orks. Section 3 introduces the proposed algorithm in detail. Section 4

presents and discusses the experimental results. Section 5 drew the
conclusions.

2. Related work

This section reviews recent research on UAV localization in GNSS-
denied environments, focusing on UAV–satellite image matching,
SLAM-based methods, and retrieval methods.
2 
2.1. UAV-satellite image matching-based visual localization

The fundamental concept of localization based on image match-
ng is to convert the task of localization into matching UAV images

with satellite maps. Handcrafted detectors, like Histogram of Oriented
Gradient (HOG) (Shan et al., 2015), SIFT (Hamidi and Samadzade-
gan, 2015), and ORB (Chan and Yakimenko, 2022), are employed for
GNSS-denied localization. However, since UAV and satellite images are
captured using different sensors, they can vary in season, lighting, and
viewpoints. As a result, handcrafted features are prone to failure during
matching localization tasks. Liu et al. (2023) matches points of interest
(POI) and store signage text (LPS) in UAV images for autonomous
localization. Qiu et al. (2024), Luo et al. (2024) and Ye et al. (2024)
demonstrate that deep learning-based feature extraction methods, such
as Superpoint (DeTone et al., 2018), Superglue (Sarlin et al., 2020),
nd LightGlue (Lindenberger et al., 2023), can obtain more accu-

rate matches from images with changes in appearance and different
viewpoints. Kinnari et al. (2022) proposes a localization solution that

atches UAV images to orthophotos using a trained convolutional
eural network (CNN) model. Chen and Jiang (2023) applies the SE(2)-

steerable network and adaptive high-quality match selection to localize
UAV oblique imagery in GNSS-denied environments. Li et al. (2023a)
and Xiao et al. (2024) employ multimodal image registration and a
coarse-to-fine depth homography estimation method to localize UAV
near-infrared and thermal images. Although learning-based matching
methods mitigate viewpoint and appearance differences between im-
ages, they disregard the three-dimensional constraints between UAV
images, leading to non-smooth trajectories and difficulties in relocation
after matching failures.

2.2. SLAM-based UAV visual localization

Recently, numerous studies have proposed solutions to address
SLAM limitations, which provide only relative positioning in the ab-
sence of geo-referenced data. Jun et al. (2022) and Kinnari et al.
(2023) match UAV imagery with satellite images for UAV’s absolute
-degree-of-freedom (2-DoF) pose, then use VIO to calculate the UAV’s

relative 6-degree-of-freedom (6-DoF) pose, integrating both through
bundle adjustment (BA) for global positioning. Hou et al. (2020) uses
terrain matching with the digital elevation model (DEM) to derive
3D terrain points for the UAV’s absolute positioning. He et al. (2023)
combines VIO, Visual Place Recognition (VPR), and map alignment
for global pose estimation. Additionally, Jurevičius et al. (2019) pro-
osed a method for UAV positioning in GNSS-denied environments by

combining particle filtering and VO. Although the SLAM method with
geo-referenced data provides absolute positioning, it requires an IMU
or barometer and often demands vertical camera images or low alti-
tudes, simplifying the complexities of UAV positioning in GNSS-denied
environments.

2.3. Retrieval-based UAV visual localization

Previous studies Ali-Bey et al. (2023) and Dai et al. (2023) ad-
dressed UAV positioning as scene recognition by retrieving the most
imilar satellite images from a database and using their locations as
he UAV’s query frame location. As a result, retrieval-based methods
an only provide relatively coarse 2D positioning for the UAV. Wang

et al. (2024), Ye et al. (2024) and Li et al. (2023b) proposed a two-stage
method combining retrieval and fine-grained matching for precise UAV
positioning, achieving an accuracy of 10 m. Notably, Li et al. (2023b)
reported a localization error of only 2.39 m in 0.59 s in a sparsely
textured village scene. FoundLoc (He et al., 2023) developed a GNSS-
denied localization approach using VIO and VPR with a foundation

odel. Hu et al. (2024) enhanced NetVLAD for image retrieval and
used Swin-Descriptors with Perspective-n-Point (PnP) for localizing 16
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Fig. 1. The proposed system framework for the location of UAVs in GNSS-Denied
environments.

UAV datasets. However, this method does not consider geometric con-
straints between UAV images and involves a large search space due to
one-by-one comparisons. Additionally, performance can be affected by
satellite image density and distribution, leading to potential positioning
errors.

3. Methodology

As depicted in Fig. 1, our UAV visual geolocation system comprises
three main modules: image management module, image feature match-
ing and association module, and pose estimation and optimization
module. In the first module, we developed an efficient map man-
agement strategy for partitioning, scheduling, and merging satellite
images. The second module handles image matching and feature point
association, identifying virtual 3D control points via Bidirectional Ho-
mologous Points Search (BHPS) and 2D–3D geo-registration for UAV
absolute positioning. The third module introduces a terrain-weighted
constraint method combined with a sliding window strategy for UAV
pose estimation and optimization.

3.1. Map manager and keyframe selection

For system localization, UAV images need to be matched with
satellite images, which often cover large areas. Thus, chunking the
satellite map is necessary to determine the corresponding range of the
UAV image, enhancing matching accuracy and efficiency. As illustrated
in Fig. 2, to manage the computational load of image matching, the
satellite image is divided into m rows and n columns, each 128 × 128
pixels, for storage. Then, the four corner coordinates of the UAV image
are calculated to determine the satellite image range S corresponding
to the UAV image. This study assumes the UAV’s approximate takeoff
point is known. Based on our experience, for consumer-grade UAVs
operating at an altitude of 500 m, the position error of the take-off
point should be within 300 m. Satellite image blocks near this point are
loaded for system initialization during the first UAV image processing.
After chunking the satellite images and considering deployment on
edge devices and computational efficiency, we calculate the number
L of image blocks to be loaded based on the available memory and
dynamically update them in memory using the least recently used
(LRU) method.

𝐿 =

{

𝑚 × 𝑛, if 𝐶𝑟𝑎𝑚 × 0.5 ≥ 𝑆𝑠𝑖𝑧𝑒 (1)

𝑚 × 𝑛 × 𝑘, otherwise.

3 
Fig. 2. Satellite image chunking. In the figure, red dashed lines indicate the boundaries
of the satellite image segments, the blue solid line area R represents the coordinate
range of the rotated UAV image, and the yellow solid line area S denotes the
corresponding satellite image range for the UAV image. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

where 𝐶𝑟𝑎𝑚 represents the device’s available memory, 𝑆𝑠𝑖𝑧𝑒 denotes the
satellite image size, and k is the empirically determined loading factor
based on available memory.

𝑘 =
𝐶𝑟𝑎𝑚 × 0.5

𝑆𝑠𝑖𝑧𝑒
× 0.5 (2)

This strategy manages dynamic updates of image blocks on edge
devices. The satellite image blocks within range S are then merged by
coordinates for image matching.

Keyframe selection affects both computational load and accuracy.
Extracting keyframes at fixed intervals can lead to issues such as
retaining many similar images if the UAV moves slowly or missing
important images if the UAV moves quickly. We use the keyframe
selection strategy from ORB-SLAM2 (Mur-Artal and Tardós, 2017).
Assuming a video frame rate of f frames per second, the system assesses
whether a frame should be a keyframe at intervals of 𝑓∕2. A new
keyframe is added if frame overlap is under 90%, indicating significant
UAV movement, or if 𝑓 × 2 frames have passed since the last keyframe
to preserve information and ensure localization continuity.

3.2. Feature extraction and association

3.2.1. Image matching and rotation estimation
Seasonal, lighting, and viewpoint differences between UAV and

satellite images limit the robustness and reliability of traditional match-
ing algorithms. We use Superpoint to extract deep feature points, Light-
Glue for matching, and Progressive Sampling Consensus (PROSAC)
to filter mismatches. The sensitivity of Superpoint feature descriptors
to image rotation may lead to matching failures when the rotation
angle between UAV and satellite images exceeds 45◦. After filtering
mismatches, the system calculates the rotation angle between the UAV
and satellite images using matching points. The next keyframe is then
rotated according to this angle to estimate its satellite map range.
Unlike (Bianchi and Barfoot, 2021), which requires a fixed heading
angle, and Kinnari et al. (2021) and Mei et al. (2023), which use IMU
angles, our approach pre-rotates keyframes using geometric relation-
ships between adjacent frames. This method improves matching and
provides rotation invariance, accommodating the UAV’s localization
across complex flight paths.

3.2.2. Bidirectional Homologous Points Search (BHPS) and 2D-3D geo-
registration

In this paper, we calculate the UAV’s initial pose using 3D virtual
control points and optimize it to minimize localization error and pose
drift, enhancing the system’s re-localization capability. As shown in
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Fig. 3. Obtaining 3D virtual control points. In the figure, red dots indicate 3D virtual
control points, and green triangles represent global map points from triangulation. BHPS
is employed to determine the 2D control point 𝐶𝑖, and its elevation is interpolated on
the DEM using 2D–3D Geo-Registration to acquire reliable 3D virtual control points.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 3, UAV images 𝐹n and 𝐹n+1 extract Superpoint feature points and
use LightGlue to obtain the matching point pair set (𝐵 , 𝐴). 𝐹n+1 and 𝐹n
are also matched with the satellite map to get the matching point pair
sets (𝐴, 𝐶) and (𝐵 , 𝐶). If the feature point 𝐶𝑖 extracted from the satellite
map meets certain conditions, 𝐶𝑖 is considered a virtual control point.
⎧

⎪

⎨

⎪

⎩

𝐵𝑗⟨−⟩𝐴𝑘,
(

𝐵𝑗 ∈ 𝐵 , 𝐴𝑘 ∈ 𝐴
)

𝐴𝑘⟨−⟩𝐶𝑖,
(

𝐴𝑘 ∈ 𝐴, 𝐶𝑖 ∈ 𝐶
)

𝐶𝑖⟨−⟩𝐵𝑗 ,
(

𝐶𝑖 ∈ 𝐶 , 𝐵𝑗 ∈ 𝐵
)

(3)

where ⟨−⟩ denotes image matching. Feature points 𝐵𝑗 and 𝐴𝑘 on 𝐹n
and 𝐹n+1 are matched, feature points 𝐶𝑖 on the satellite image are
matched with 𝐴𝑘 and 𝐵𝑗 on 𝐹n+1 and 𝐹n, respectively. By employing
bidirectional matching associations between keyframes and between
keyframes and the satellite image, we validate stable and reliable 2D
virtual control points 𝐶𝑖. In contrast, existing matching-based local-
ization methods often rely solely on unidirectional matching between
UAV and satellite images. They lack inter-frame matching for bidirec-
tional validation, resulting in unstable points and reduced accuracy in
texture-sparse areas.

Utilizing the TIFF World File (TFW) associated with GeoTIFF format
satellite imagery, the geographic coordinates of the upper-left corner of
the satellite image and the pixel resolutions in the X and Y directions
can be obtained, allowing for the calculation of the geographic coordi-
nates

(

𝑋𝑖, 𝑌𝑖
)

for any pixel 𝐶𝑖 in the satellite image. We calculate the
elevation 𝑍𝑖 of 𝐶𝑖 on the DEM using 2D–3D Geo-Registration to obtain
the 3D coordinates

(

𝑋𝑖, 𝑌𝑖, 𝑍𝑖
)

, which are considered as the 3D virtual
control point. We determine the pixel coordinates

(

𝐷 𝑥𝑖, 𝐷 𝑦𝑖
)

of 𝐶𝑖 on
the DEM and then use spatial interpolation to obtain the elevation 𝑍𝑖.
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐷 𝑥𝑖 =
𝑋𝑖 − 𝑥
𝑟𝑥

𝐷 𝑦𝑖 =
𝑦 − 𝑌𝑖
𝑟𝑦

𝑍𝑖 = 𝑇
(

𝐷 𝑥𝑖, 𝐷 𝑦𝑖
)

(4)

where x and y denote the geographic coordinates of the DEM’s top-left
corner, and rx, and ry are the DEM resolutions. Considering the DEM
resolution and terrain continuity, we use Cubic Spline Interpolation T()
with a 4 × 4 neighborhood around

(

𝐷 𝑥𝑖, 𝐷 𝑦𝑖
)

to achieve accurate and
smooth Z values. This process yields the 3D virtual control point set 𝐶3𝑑
for UAV pose estimation and optimization. Methods (Shan et al., 2015;
Hou et al., 2020) that use iterative solving for elevation determination
are computationally demanding, time-consuming, and need accurate
UAV pose data.

3.3. Absolute pose estimation and optimization

3.3.1. Rough estimation of image pose using PnP
After the homologous points search and 2D–3D geo-registration,

a set of 3D virtual control points 𝐶3𝑑 is obtained. Using the 3D co-
ordinates of each point and the corresponding pixel coordinates, the
4 
PnP problem can be formulated to estimate the UAV’s absolute po-
sition. However, in areas with sparse texture or significant changing
ground features, obtaining enough 3D points for accurate position-
ing is challenging. Moreover, frame-by-frame PnP calculations ignore
geometric constraints of co-visible points between frames, reducing
accuracy and causing potential jumps in the trajectory. To address this
issue, we improve UAV positioning by integrating co-visible geometric
relationships between images into coarse localization. First, co-visible
geometric relationships are employed to triangulate (Davison, 2003)
and generate global map points. Then, global map points and 3D virtual
control points are used for terrain-weighted optimization, enhancing
UAV pose accuracy and smoothing the trajectory.

3.3.2. Global map points generation and filtering
After estimating the poses of images 𝐹n-1 and 𝐹n with EPnP, we

apply triangulation to obtain 3D global map points in the world co-
ordinate system, shown as green triangles in Fig. 3. We remove outlier
map points using the method from ORB-SLAM2. We also check whether
the difference between the global map point’s Z value and the DEM
elevation exceeds a fixed threshold to filter out outliers.

3.3.3. Terrain-weighted constraint bundle adjustment and sliding-window
optimization

In SLAM, Bundle Adjustment (BA) is commonly employed to min-
imize the objective function e, optimizing the UAV’s pose and map
points.

𝑒 = min
𝜉 ,𝑃

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1

‖

‖

‖

ℎ
(

𝜉𝑖, 𝑃𝑗
)

− 𝑝𝑖𝑗
‖

‖

‖

2
(5)

where h()denotes the reprojection function, i represents the ith image,
j indicates the jth global map point on the image, 𝜉 is the initial UAV
pose estimated by PnP, P is the generated global map point, and p is
the observed position of the feature point corresponding to P. However,
the objective function e minimizes only the least squares difference
between the projected and observed positions of the global map points,
excluding external control information. This can lead to local optima,
causing UAV positioning errors and pose drift.

We use DEM elevation data as prior information, project the 3D
virtual control points, and compare them with their observed positions,
as illustrated in Fig. 4. The figure’s green triangular denotes global
map points, and the red circular indicates the 3D virtual control points.
During optimization, both types of points are projected and compared
with their observed positions, serving as visual odometry and terrain
constraints for integrated geolocation. The optimized objective function
e can thus be expressed as:

𝑒 = min
𝜉 ,𝑃

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1

{

(

1 − 𝛽𝑖
)

× 𝜌
(

‖

‖

‖

ℎ
(

𝜉𝑖, 𝑃𝑗
)

− 𝑝𝑖𝑗
‖

‖

‖

2
)

+ 𝛼𝑗 × 𝛽𝑖 ×
‖

‖

‖

ℎ
(

𝜉𝑖, 𝐶𝑗
)

− 𝑝𝑖𝑗
‖

‖

‖

2 }
(6)

where 𝜌 is the Huber kernel function, which reduces the influence of
outlier errors. C denotes the 3D virtual control points, and the latter
part of the equation represents the reprojection errors of these virtual
control points, used as terrain constraints. The coefficient 𝛼 is defined
as:

𝛼𝑗 =

⎧

⎪

⎨

⎪

⎩

1, otherwise.
1

‖

‖

‖

𝑍𝑗 − 𝑧𝑗
‖

‖

‖

, if ‖

‖

‖

𝑍𝑗 − 𝑧𝑗
‖

‖

‖

≥ 3 (7)

where 𝑍𝑗 represents the elevation of the virtual control point 𝐶𝑗 , and
𝑧𝑗 denotes the elevation of the global map point corresponding to 𝐶𝑗 .
As the difference between 𝑍𝑗 and 𝑧𝑗 increases, 𝛼 decreases, reducing
the weight of the terrain constraint during optimization. In such cases,
optimization relies on the odometry constraint to minimize the impact
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Fig. 4. The pose optimization process utilizes 3D virtual control points and global map
points. In the diagram, [𝑅|𝑡] denotes the pose of the image frame. The projection of the
virtual control point 𝐶 and the global map point 𝑃 onto image frames F are compared
with the observed positions to compute the reprojection errors 𝑒.

Fig. 5. The diagram illustrates the integration of sliding window and terrain constraint
optimization methods. In (a), the gradient from cyan to red indicates terrain elevation
variations. In (b), the colored dots inside the blue box represent global map points,
the red dots inside the red box are 3D virtual control points. In the yellow box of (a),
the current frame is combined with its 5 adjacent frames in a sliding window for joint
pose optimization. An optimization is performed in the green box of (b) with a sliding
window size of 10. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

of errors in DEM or map point elevation. The coefficient 𝛽 mainly
adjusts the weight of the terrain constraint during optimization.

𝛽𝑖 =

⎧

⎪

⎨

⎪

⎩

0.8, otherwise.
Var

(

𝑍𝑖
)

𝑍max −𝑍min
, if Var(𝑍𝑖)

𝑍max−𝑍min
< 0.8

(8)

where Var(𝑍𝑖) represents the variance of the elevation points on the
DEM corresponding to the global map points in the current image
frame. In flat areas with minimal terrain variation, 𝛽 is small, so the
optimization relies primarily on the odometry constraint. In regions
with significant terrain elevation differences, 𝛽 is larger, increasing the
weight of the terrain constraint during optimization. By dynamically
adjusting 𝛽, the relative constraints provided by odometry and the
absolute constraints provided by virtual control points are weighted
and integrated. This approach effectively reduces error accumulation,
minimizes positioning jumps, prevents drift in the UAV’s position and
elevation, and ensures system re-localization after positioning failures.

Additionally, we use a sliding window mechanism to limit the
optimization computation to a specific time window and improve pose
estimation performance. As shown in Fig. 5, we developed a strategy in-
tegrating large and small sliding windows. For each keyframe, a sliding
window covering its 5 neighboring frames is used for joint optimiza-
tion, improving the pose accuracy of keyframes within the window.
Additionally, for every 15 keyframes, an optimization with a sliding
window size of 10 is performed to reduce cumulative positioning errors
and maintain a smooth trajectory.
5 
3.3.4. Geo-registered feature tracking and motion model
When the UAV flies over texture-rich areas, it can collect more 3D

virtual control points. The system tracks these virtual control points
for localization, eliminating the need for UAV–satellite image matching
and enhancing efficiency. In areas with significant ground feature
changes or sparse textures, matching UAV images with satellite images
can be challenging and may fail to acquire enough virtual control points
for PnP. In such cases, we use the velocity model from the SLAM to
estimate the current frame’s pose. If the poses of frames Fn-1 and Fn
are determined as 𝑅𝑡𝑛−1 and 𝑅𝑡𝑛, respectively, the velocity v between
them is computed as:

𝑣 = 𝑅𝑡𝑛 ⋅ 𝑅𝑡
−1
𝑛−1 (9)

The pose 𝑅𝑡𝑛+1 of frame Fn+1 can be derived from the velocity model
as follows:

𝑅𝑡𝑛+1 = 𝑅𝑡𝑛 ⋅ 𝑣 (10)

After obtaining the poses of frames Fn and Fn+1, we perform trian-
gulation to obtain global map points and then apply BA optimization.
This ensures localization in texture-sparse or variable environments,
enhancing system stability.

4. Experiments

This section evaluates the proposed UAV visual positioning system
using data from 20 real flight scenarios, conducted on a desktop with
an Intel i7-10750H CPU, 32 GB RAM, Nvidia GTX 1660 Ti Mobile
GPU, and Ubuntu 20.04. The system’s usability and efficiency were also
tested on the NVIDIA Jetson Orin NX edge device.

4.1. Introduction of experimental data

UAV Datasets. To evaluate the system’s positioning accuracy and
robustness under GNSS denial, we collected 20 sets of UAV image data
across various scenarios, seasons, weather conditions, terrains, flight
altitudes, viewpoints, flight path shapes, and thermal infrared images,
as shown in Fig. 8. The test flight paths totaled 102.3 km, with altitudes
ranging from 200 to 1167 m and a terrain elevation difference of up to
412 m. The dataset summary is shown in Table 2. During flights, drones
recorded image positions using GPS as the ground truth for comparison.
The DJI M300, DJI phantom4 RTK and DJI Mavic3E drones exhibit a
horizontal and vertical positioning accuracy of ±0.1 m in RTK mode.
In contrast, the DJI Phantom3 drone has a GNSS horizontal positioning
accuracy of ±1.5 m and a vertical accuracy of ±0.5 m.

Satellite Image. In GNSS-denied situations, the closer the acquisition
time and resolution of the satellite images are to those of the UAV
images, the fewer changes in observed features, resulting in better
matching performance with LightGlue and higher accuracy and robust-
ness in UAV positioning. As depicted in Fig. 6, we selected Google and
ESRI satellite images from different years and seasons compared to the
UAV images to evaluate the system’s performance. The acquisition date
of Fig. 6(a) is June 2022, image (b) was acquired in winter 2023, image
(c) in October 2022, image (d) in summer 2023, and the acquisition
dates for images (e–h) are July 2022, June 2023, June 2019, and June
2014, respectively. For image resolution, we chose satellite images at
levels 16 to 18 to handle altitude changes and terrain variations.

Terrain Data. Fig. 7 shows the 12.5 m resolution DEM from the
Advanced Land Observing Satellite (ALOS) in the experimental re-
gion. The DEM accurately depicts terrain undulations in hilly and
mountainous areas (Fig. 7(b) and (f)). However, it fails to capture
urban building forms due to resolution limits (Fig. 7(c)–(e)), leading
to substantial errors in Z-values of virtual control points from urban
areas and complicating GNSS-denied positioning.

TerrainFusion Dataset. The TerrainFusion dataset (Wang et al.,
2019) includes several scenarios such as cities, plains, mountains, and
deserts. A summary of the dataset is presented in Table 1. This dataset
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Fig. 6. Reference images for positioning tests. (a) and (b) are for sets a-c; (c) and (d)
are for sets d-i and r-t; (e), (f), and (g) are for sets m-n, o, and p; and (h) is for set q.
Images (b) and (d) are UAV orthophotos used in sets c and g.

Table 1
Characteristics of the TerrainFusion datasets.

Set Traj. (km) Alt. (m) Speed (m/s) Area

olathe 3.7 150 10.1 1.59 km2

mound60 m 0.25 50 13.4 1530 m2

mountainlong 9.25 127 11.2 1.03 km2

fengniao 0.59 78 15.7 3789.2 m2

village 8.32 196 17.4 0.932 km2

factory 4.43 126 16.3 0.432 km2

Fig. 7. DEM data for the experiments are as follows: (a) corresponds to satellite images
in Fig. 6(a)–(b); (b) corresponds to Fig. 6(c)–(d); and (c)–(f) corresponds to Fig. 6(e)–
(h).

features typical UAV operational scenarios with significant variations
in flight speed, flight path length, and operational area. The UAV flight
paths are relatively regular, with images captured by the UAV camera
oriented vertically downward. We utilize the UAV’s GPS-recorded tra-
jectory as ground truth for experimental comparisons. Since the flight
altitude of the mound60 m data is too low to meet our method’s testing
requirements, we exclude it from the experiments.

4.2. Metric analysis

We compared each positioning method to the ground truth from the
drone GNSS, reporting the Root Mean Square Error (RMSE) and Mean
6 
Absolute Error (MAE) in X, Y, and Z coordinates.

𝑅𝑀 𝑆 𝐸 =

√

√

√

√
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where PC denotes the calculated UAV coordinates and PT represents
the GNSS ground truth. MAE reflects the positioning error magnitude,
with a smaller MAE indicating higher accuracy. RMSE indicates signif-
icant anomalies in positioning, with a smaller RMSE suggesting more
consistent accuracy and a smoother trajectory.

4.3. Localization performance

Fig. 10 shows the positioning results for the 20 test data from
Fig. 8, demonstrating that our system effectively achieves GNSS-denied
positioning in various complex scenarios. We will now analyze the
system’s performance.

System Performance during diverse Trajectory shapes and Varying Flight
Altitude. As illustrated in Fig. 10, with effective keyframe extraction
and rotation invariance strategies, our system has achieved 3D UAVs
positioning under complex flight paths. Altitude changes during flight
can cause significant discrepancies in image resolution and geographic
coverage, complicating UAV positioning in GNSS-denied environments.
Unlike the fixed flight heights in He et al. (2023) and Hou et al. (2020),
the UAV in sets k and l experienced up to 360 m altitude changes, while
in set p, it flew between 281 m and 500 m. Our system employs flexible
satellite image scheduling and aggregation strategies, along with image
pre-rotation and homologous points search methods, to improve image
matching accuracy and ensure precise UAV positioning under complex
flight paths and altitude variations.

System Performance under Image Obliquity and Rotation. As illustrated
in Fig. 9(a), when capturing images vertically, the center point L1 of the
UAV image can be considered the UAV’s position after matching with
the satellite image. When the UAV’s camera is obliqued during capture,
a deviation occurs between the image center point L2 and the actual
UAV position, increasing with a larger oblique angle. Additionally,
tall buildings in obliqued images obstruct surrounding features, posing
further challenges for UAV positioning. Therefore, Kinnari et al. (2021),
Bianchi and Barfoot (2021) and Goforth and Lucey (2019) require
the UAV’s camera to capture images directly downward or use angle
information from the IMU to perform orthorectification, minimizing the
negative effects of image oblique and rotation.

Image rotation affects overlaps and presents significant challenges
for image matching. To mitigate the negative impacts of image oblique
and rotation on UAV positioning, we apply a pre-rotation strategy to
the image and search for precise correspondences through BHPS and
use 2D–3D Geo-Registration to obtain high-quality 3D virtual control
points for PnP solving to determine the UAV’s pose, rather than simply
using the matched image center point as the UAV’s position. This
approach ensures the system has rotation-invariant and viewpoint-
robust capabilities during positioning. In set k, where the UAV with
a 20◦ oblique camera performs near 360◦ rotations, our system still
achieves stable positioning.

System Performance during High Altitude, Long-distance Flights, and
Rolling Terrain. We evaluated the system’s positioning performance in
high-altitude and long-distance scenarios using five datasets from sets
h to l. In set k, the UAV flew 9.3 km at a minimum altitude of 722 m,
with terrain elevation changes exceeding 400 m. The total flight length
of the datasets exceeded 100 km. To address these challenges, We
use high-quality 3D virtual control points, invariant to both viewpoint
and rotation, for initial pose estimation, followed by optimization of
the UAV’s pose with global map points and virtual control points.
Additionally, dynamic updating of satellite image blocks and sliding
window optimization maintain efficiency over long distances and large
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Table 2
Characteristics of the UAV datasets (ED: Elevation Difference).

Set Location Scene Traj. (m) Camera ED (m) Alt. (m) Yaw (◦) Pitch (◦) Flight date

a Zhaoyuan Village 2333 DJI H20t 9.5 200 −179.9∼179.8 −90.2 Jul. 2022
b Zhaoyuan Village 8483 DJI H20t 13.1 389∼500 −179.9∼179.8 −122∼−77.8 Sept. 2023
c Zhaoyuan Village 3404 DJI H20t 10.8 399∼498 −179.9∼179.8 −119∼−59 Sept. 2023
d Dengfeng Village 3233 DJI P4R 43.8 500 −1.5∼0.8 −89.8 Sept. 2020
e Dengfeng Forest 2279 DJI P4R 70.2 500∼580 −179.9∼179.9 −89.7 Jun. 2021
f Dengfeng Hilly 3288 DJI P4R 45.8 500 −179.9∼179.9 −89.9 Mar. 2022
g Dengfeng Hilly 3343 DJI P4R 33.7 500 −179.9∼179.9 −89.9 Mar. 2022
h Dengfeng Towns 10 068 DJI H20t 88.9 500 −179.9∼179.9 −89.7 Mar. 2023
i Dengfeng Mountain 7219 DJI H20t 201.5 500 −179.9∼179.9 −89.8 Mar. 2023
j Dengfeng Hilly 10 529 DJI H20t 80.8 381∼500 −179.8∼178.7 −98.2∼−65 Jun. 2023
k Dengfeng Mountain 9353 DJI H20t 412.6 722∼1045 −179.8∼178.7 −97.3∼−70.9 Jan. 2024
l Dengfeng Mountain 5125 DJI H20t 195.3 799∼1167 −179.8∼178.7 −91.2∼−66.8 Jan. 2024
m Zhengzhou City 4282 DJI H20t 12.1 500 −5∼173.3 −89.9 May. 2023
n Zhengzhou City 5396 DJI H20t 12.1 342∼500 −179.9∼179.8 −120∼−80 May. 2023
o Zhengzhou City 4855 DJI H20t 13.2 500 −179.9∼179.8 −99.3∼−76 Dec. 2023
p Zhengzhou City 5496 Mavic 3E 12.9 219∼500 −179.9∼180 −90∼−64.7 Feb. 2024
q Olathe Desert 3702 Phantom3 45.8 150 −179.9∼180 −89.8 May. 2016
r Dengfeng Hilly 4464 H20t Infrared 79.2 500 −30.4∼31 −90.4 Jan. 2021
s Dengfeng Hilly 2487 H20t Infrared 50.6 500 6.9 −90.4 Jan. 2021
t Dengfeng Villages 2962 H20t Infrared 85.3 500 −179.9∼179.8 −89.6 Jan. 2021
Fig. 8. The 20 sets of UAV data used in the experiments. (a)–(c) flat rural areas, (d)–(l) hilly and mountainous regions, (m)–(p) flat urban areas, (q) desert, and (r)–(t) hilly
regions. The colored lines in the figures represent the UAVs’ actual flight trajectories.
areas. In He et al. (2023), Kinnari et al. (2021) and Kinnari et al.
(2022), UAV heights are under 100 m, while in Choi and Myung (2020),
Bianchi and Barfoot (2021), and Patel et al. (2020), flight paths do not
exceed 2 km, often in flat urban areas.

System Performance in Regions with Sparse Texture. In sparse texture
regions (Fig. 11), finding reliable 3D virtual control points for UAV pose
determination is challenging. In these cases, we adapt SLAM positioning
methods by using co-visibility geometric relationships between frames.
However, without 3D virtual control points for terrain constraints, the
7 
UAV pose estimated with the velocity model may drift. As shown in
Fig. 12, LightGlue struggles with image matching in sparse texture re-
gions, leading to increasing pose errors. When the UAV moves to more
textured areas, our system uses terrain-constraint optimization to cor-
rect the pose and relocalize, preventing cumulative error propagation
seen in SLAM. Additionally, the system uses 3D virtual control points
to constrain and optimize positioning, calculating each frame’s absolute
pose and scale in the world coordinate system. Thus, it does not rely
on loop closures for drift correction to reduce error accumulation like
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Fig. 9. The impact of oblique and rotated UAV images on positioning. (b) shows
the result of registering and overlaying the oblique UAV image with the satellite
image. The red dots indicate the image center points, corresponding to point L2 in (a),
and the yellow dots represent the centers of all extracted Superpoint features. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

SLAM. In set k, the system achieves an average positioning accuracy of
4.455 m, even in straight-line flight. Our optical camera-based system
ensures accurate localization unaffected by GNSS signals and is highly
resistant to interference.

System Performance under Seasonal, Lighting, and Weather Variations.
The closer the acquisition time and weather conditions of the UAV
images and satellite maps, the smaller the ground feature and lighting
8 
changes, leading to improved image matching and more accurate 3D
virtual control points for UAV precise positioning in GNSS-denied envi-
ronments. Due to satellite revisit cycles and other constraints, obtaining
satellite images close to the UAV image dates may not be feasible. As
shown in Fig. 13, there are noticeable seasonal changes between the
UAV and satellite images in (a)–(c). The variations in vegetation and
water bodies in (d)–(f) reflect significant differences in the acquisition
times of the UAV images and satellite maps. In (g)–(i), the weather and
lighting conditions of the UAV images and satellite maps are distinctly
different. To address this, we pre-rotate the UAV images and use a
velocity model to estimate the UAV’s pose based on the co-visual
geometric relationships between image frames. Despite potential errors
with the velocity model, the system quickly corrects and repositions
once image matching improves. This allows effective UAV visual po-
sitioning in GNSS-denied environments, even in sparse texture areas
or under seasonal variations. In Kinnari et al. (2022), a CNN network
was trained to handle appearance and viewpoint differences, achieving
effective UAV image matching across seasons. However, this method
did not account for other factors, resulting in positioning errors of about
30 m and limiting accuracy to 2D positioning.

System Performance During Night-time. Visible light cameras struggle
to capture sufficient light for night-time imaging, making night-time
localization challenging. As shown in Fig. 14, we collected three sets
of thermal infrared UAV images — sets r, s, and t — to evaluate
the system’s performance in night-time localization. Due to significant
imaging differences, LightGlue fails to match visible light satellite maps
with thermal infrared images, so we use LoFTR (Sun et al., 2021) for
Fig. 10. Positioning results for the 20 data sets. The red curve indicates the UAV trajectory computed by the system, the blue curve shows the GNSS-recorded ground truth
trajectory, and the colored points represent the global map points generated by the system. In (a)–(d), green lines link the UAV trajectory to the map points, showing the
connections between image frames and their corresponding map points. In (e)–(h), pyramids between the trajectory lines and map points depict image geographic coverage. In
some areas, the small error between the system’s positioning and the ground truth causes the red and blue trajectories to nearly overlap. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. UAV images of sparse texture regions. (a) shows the water area in set i. (b)
depict cornfields from sets a. (c) shows the bare mountainous area in set i. (d) illustrates
shadows caused by mountain obstructions in set l. (e) shows the snow-covered area in
set p. (f) depicts the desert area in set q.

Fig. 12. System’s re-localization capability. The blue line represents the GNSS-recorded
UAV trajectory, while the red line represents the system-calculated trajectory. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

end-to-end feature extraction and matching. Since end-to-end matching
does not support bidirectional feature point association, we use nearest
neighbor search to find corresponding points. However, the thermal
infrared camera’s small field of view and low resolution affect feature
point accuracy, leading to positioning errors of about 20 m, which is
worse than visible light images. Additionally, thermal infrared cameras
provide higher contrast and more precise details at night, resulting in
better night-time localization accuracy compared to daytime.

System Performance on TerrainFusion Dataset. As illustrated in
Fig. 15, our system accomplished the positioning challenges in these
complex scenarios, with results summarized in Table 3. While the
TerrainFusion Dataset contains relatively straightforward flight paths,
the sparse scene textures and low UAV flight altitudes pose challenges
for our UAV positioning method. According to the experimental results,
our method achieves the highest positioning accuracy in the y and z
directions, while the matching method performs best in the x direction.
This is due to notable deviations in keyframe positioning results in the
mountainlong and village datasets, leading to larger positioning errors
in the x direction. However, our system benefits from terrain constraint
optimization, enabling it to correct UAV pose and re-localize even with
significant deviations in key frame positioning, unlike SLAM, where
positioning errors tend to accumulate and propagate. Additionally, our
9 
Fig. 13. Overlay images show the result of UAV images matched with satellite maps
under various scenarios, seasons, weather conditions, and lighting. UAV images are
framed in red, with red dots marking geometric centers and yellow dots representing
feature point centers. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

system does not require the UAV camera to be oriented vertically
downward, as is necessary for matching-based methods. Moreover,
the system can provide 3D positioning information for the UAV in
GNSS-denied environments.

4.4. Localization precision comparison

Ablation experiment. In the ablation experiment, we disabled the
terrain-weighted constraints optimization module to assess its effect
on positioning accuracy, meaning that we did not use the terrain
elevation information from the DEM or 3D virtual control points for
UAV optimization localization. As shown in Fig. 16 and Table 4,
removing the module allowed for absolute positioning but introduced
significant drift and scaling errors. Without this module, the system’s
positioning, similar to SLAM, relied solely on inter-frame relationships
and lacked terrain constraints. This absence hinders effective UAV pose
correction through virtual control points, causing errors to accumulate
over time, leading to drift, scaling errors, and inability to relocalize.
In contrast, our method’s positioning closely matches the ground truth,
highlighting the precision of our system and demonstrating the mod-
ule’s effectiveness in controlling error accumulation and reducing drift
in GNSS-denied conditions.

To assess the impact of DEM resolution on UAV localization ac-
curacy, we used the 12.5 m ALOS DEM and the 30 m Copernicus
DEM for test data Set d. With other experimental parameters constant,
the MAE values for UAV localization with the Copernicus DEM were
3.882 m, 14.978 m, and 24.414 m, while those with the ALOS DEM
were 3.785 m, 15.047 m, and 4.676 m. These results indicate that
the higher-resolution ALOS DEM enhances UAV localization accuracy
under GNSS-denied conditions.
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Table 3
MAE and RMSE results for localization of the TerrainFusion datasets.

Set Ours Ablation study EPnP Matching

x (m) y (m) z (m) x (m) y (m) z (m) x (m) y (m) z (m) x (m) y (m)

MAE 22.207 9.829 8.883 36.058 22.628 44.253 28.207 20.483 12.225 11.3 11.370
RMSE 31.389 21.413 14.356 44.365 26.012 52.907 41.573 35.520 20.012 23.756 28.597
Table 4
MAE and RMSE results for localization of 20 UAV datasets.

Set Ours Ablation study EPnP Matching

x (m) y (m) z (m) x (m) y (m) z (m) x (m) y (m) z (m) x (m) y (m)

MAE 6.701 8.178 6.966 32.241 33.866 29.813 25.402 37.423 13.998 33.207 35.395
RMSE 9.849 12.229 10.124 37.960 38.122 36.845 51.326 68.789 27.943 73.684 69.062
Table 5
Summary of other method positioning results.

Author & Year Method Experiments Known initial Accuracy Times

Chiu et al. (2014) Image matching
+ SLAM

Flight length: 38.9/26.5 km; Sensors: IMU
and camera; Map: 3D map

Yes 9.35 m 1 Hz

Shetty and Gao (2019) Deep learning +
VO

UAV simulation imagery; Map: 2D Google
map

Yes 36 m 0.82 s
Patel et al. (2020) Image matching

+ VO
Flight length: 1.13 km; Flight height:
36–42 m; Sensor: camera with a gimbal;
Map: Google Earth map

Yes 1.39/0.86/0.38 m 1 Hz

Kinnari et al. (2021) Image matching Flight length: 6.8/4.0/6.3 km; Flight height:
92 m; Sensor: IMU; Map: 2D map

Yes <20 m –

He et al. (2023) Image Retrieval
+ SLAM

Flight length: 0.88/1.0 km; Flight height:
50 m; Sensors: IMU and nadir-facing
camera; Map: Google map

No 19.38 m 1.93 Hz

Ye et al. (2024) Image Retrieval
+ image
matching

Flight height: 0.15/4 km; Map: BJ-2
satellite images

No 0.1/10 m 0.42 s

Chen and Jiang (2023) Image matching
+ PnP

Flight length: 0.85/1.76 km; Flight height:
169/325 m; Map: 2D map; coverage area
<3 km2

No 5.54/5.2 m –

Ours Image matching
+ SLAM

Flight length: 102.3 km; Flight height:
200∼1167 m; Map: 2D map + DEM

Yes 6.7/8.1/6.9 m 0.74/0.6 s
Fig. 14. Overlay of thermal infrared UAV images with satellite maps. The red box
highlights the thermal infrared UAV images. In (a) and (c), the small yellow dots
indicate feature points extracted by LoFTR. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
10 
Fig. 15. Positioning results for the TerrainFusion dataset. (a) to (d) represent the
positioning results for the mountainlong, fengniao, village, and factory datasets,
respectively.
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Fig. 16. Comparison of positioning trajectories. Lines of different colors represent the
trajectories of various methods. Since the matching positioning method provides only
X and Y coordinates, GNSS-recorded Z values are used for the Z-axis in the matching
method. For clarity, (c) and (d) display only the trajectories of our method, the ablation
experiment method and Pix4Dmapper.

Comparison of Our Method with Match and PnP Localization. Table 4
presents MAE and RMSE statistics for the 20 datasets. Our method
significantly outperforms both EPnP and matching positioning meth-
ods, which are comparable to GNSS positioning. Furthermore, the
proposed method exhibits the smallest average RMSE, indicating fewer
anomalies, stable accuracy, and smoother trajectories. The matching
positioning method assumes flat terrain and requires vertical UAV
images, making accuracy sensitive to terrain variations and camera
angle, and it does not provide altitude information. In set k, with moun-
tainous data, the MAE for matching positioning is 117.443 m, with a
high RMSE. Sparse textures make obtaining sufficient virtual control
points for PnP-based positioning difficult. As shown in Fig. 16(a) and
(b), positioning results exhibit significant errors and trajectory jumps.
Moreover, both matching and PnP methods neglect geometric relation-
ships between adjacent images, making relocalization impossible after
a positioning failure.

Comparison of Our Method with Pix4Dmapper. We import the
keyframe and their corresponding GPS coordinates extracted during our
system’s operation as POS data into the Pix4Dmapper software, which
then uses SfM (Structure from Motion) optimization to calculate the
pose of each keyframe. As illustrated in Fig. 16, the UAV trajectory
computed by Pix4Dmapper closely aligns with the GPS trajectory in
shape, exhibiting a smooth trajectory that highlights the high preci-
sion of SfM-based software. However, due to the absence of Ground
Control Points for Bundle Adjustment, the UAV trajectory calculated
by Pix4Dmapper exhibits systematic drift. Although such software
achieves high computational accuracy, it requires significant processing
resources and is suitable only for offline data processing, lacking
real-time capabilities. Therefore, it is unsuitable for real-time UAV
positioning in GNSS-denied environments. While our system’s accuracy
and trajectory smoothness may not match that of Pix4Dmapper, it
is better suited for UAV positioning in dynamic scenarios, fulfilling
real-time positioning needs in GNSS-denied conditions.
11 
Comparison of Our Method with Other Research. Due to the lack
of publicly available code and standard datasets, we summarized and
compared several recent research methods, as shown in Table 5. Patel
et al. (2020) and Chiu et al. (2014), like ours, require an initial
position; but our system achieves 3D positioning without barometric
altimeters or IMUs. Kinnari et al. (2021) requires a downward camera
and relies solely on image matching, which cannot ensure trajectory
continuity. He et al. (2023) uses a retrieval approach where each frame
is positioned independently, providing good accuracy but requiring the
UAV to maintain a fixed altitude and heading. Ye et al. (2024) excels in
texture-rich environments. Shetty and Gao (2019) uses deep networks
for cross-view positioning but only achieves 36 m accuracy. Chen and
Jiang (2023) handles highly oblique images but was tested only in
urban settings and short flights, not covering complex scenarios such
as high altitude, long distances, and terrain variations. Our system
uses virtual control points for pose estimation and optimization, pre-
venting error accumulation and avoiding loop closure correction, with
relocalization capability after failure. In GNSS-denied conditions, our
system, which requires no additional equipment, achieves MAE values
of 6.701 m, 8.178 m, and 6.966 m for visual-only positioning, with
values for sets c, h, and g under 5 m. While methods Patel et al.
(2020) and Chen and Jiang (2023) also achieve under 5 m accuracy,
our approach handles various complex conditions, including diverse
flight paths, altitudes, image tilts, terrain, and seasonal changes. Ad-
ditionally, existing methods rarely address night-time UAV positioning
under GNSS denial. In contrast, our system demonstrates the feasibility
and effectiveness of using thermal infrared imagery for night-time po-
sitioning, which opens the possibility of achieving all-day, all-weather
navigation under GNSS denial.

4.5. Computational efficiency

Effective strategies for satellite image chunking, dynamic schedul-
ing, geo-registered feature tracking, and sliding window optimization
result in average keyframe positioning times of 0.74 s per frame for
visible light images and 0.609 s per frame for thermal infrared images
in our system. Other methods also achieve positioning times of around
1 s, which is sufficient for UAV positioning in GNSS-denied scenarios.
We deployed and validated the system’s accuracy and effectiveness on
the NVIDIA Jetson Orin NX, the average keyframe positioning time is
3.25 s.

5. Conclusions

This article presents a high-precision, robust UAV visual localization
system for GNSS-denied scenarios day and night, integrating image
matching, visual odometry, and terrain-weighted constraint optimiza-
tion. The system demonstrated excellent adaptability and positioning
performance across 20 UAV test datasets. Compared to existing meth-
ods, our system achieves pure visual 3D absolute positioning under
GNSS denial without relying on altimeters or IMUs. It does not re-
quire a top-down camera and remains robust against UAV rotation,
altitude variations, trajectory shapes, rolling terrain, feature-poor en-
vironments, and seasonal changes. Additionally, the system avoids
the need for loop correction, prevents error accumulation and pose
drift, and enables re-localization after positioning failure. Our system
also addresses night-time denial positioning challenges. The average
keyframe positioning time is under 1 s, with mean MAE values for
XYZ positioning across 20 UAV datasets being 6.701 m, 8.178 m, and
6.966 m. This performance achieves GNSS-comparable accuracy and
can be a robust supplement to GNSS in denial environments. In the
future, We will explore multi-sensor fusion localization techniques to
enhance the system’s robustness and improve positioning efficiency.
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