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A B S T R A C T

Deep-learning based approaches have been proven effective for Digital Elevation Model (DEM) super-resolution
(SR) tasks. Previous networks typically treat DEM elevation values as single-channel image for input. However,
DEM images alone cannot fully capture spatial and terrain features. Shaded relief images (SRIs), derived from
DEMs, serve as crucial visual cues that intuitively convey terrain characteristics, addressing the limitations
of DEM images and providing synergistic benefits for training DL models. The primary challenge in utilizing
SRIs for guiding DEM SR lies in accurately selecting a consistent structure to extract and effectively integrate
features from SRIs and DEMs. In this study, we propose an Attention-based Hierarchical Terrain Fusion (AHTF)
framework for guided DEM SR. Specifically, an Attention-based Feature Fusion Module (AFFM) is designed
to efficiently fuse relevant information from LR DEM and SRI, which includes a feature enhancement block
to select valuable features and a feature recalibration block to fuse diverse terrain features. Additionally, we
optimize the loss function from the perspectives of terrain analysis and visual effects. We validate AHTF on
our newly constructed real-world Shade-DEM SR dataset and two open-source DEM SR datasets. Compared to
the current state-of-the-art methods, our AHTF achieves the best results in terms of root mean square error
(RMSE) for elevation, slope, and aspect. Furthermore, the extracted stream networks are closer to real-world
conditions. This study offers new insights and methods for further research and application in the field of DEM
super-resolution. Our dataset can be obtained at https://doi.org/10.6084/m9.figshare.25590945.
1. Introduction

Digital Elevation Model (DEM) typically employs discrete eleva-
tion data from the earth’s surface for terrain representation (Liang
et al., 2012). DEM plays pivotal roles across various domains such
as hydrology (Borzi et al., 2021), ecology (Pan et al., 2013), and
geomorphology (Xiong et al., 2021). Acquiring high-resolution (HR)
DEM data poses significant challenges. While traditional methods like
aerial photogrammetry (Ouédraogo et al., 2014), InSAR interferome-
try (Chunxia et al., 2005), and LiDAR measurements (Liu, 2008) can
yield high-quality DEM data. However, due to measurement costs and
technological limitations, acquiring HR DEMs for global or specific
areas still poses certain challenges. With advancements in technology
and increasing demand for HR DEMs in various geo-spatial analysis
tasks, there is a growing need for methods capable of directly recon-
structing HR DEMs from low-resolution (LR) counterparts, as known as
super-resolution (SR) methods (Wang et al., 2024).

For DEM SR, traditional approaches relied on interpolation-based
methods such as Bicubic (Dunlop, 1980). While these methods are
often efficient simple and convenient to use, they may produce HR
images with insufficient sharpness and distortion (Wang et al., 2024).
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Subsequently, research endeavors have explored introducing learning-
based methods to address this issue. The first approach involves Con-
volutional Neural Networks (CNNs), such as the simplistic SRCNN
structure, deep residual networks (Jiao et al., 2020) and EDSR (Xu
et al., 2019), which have demonstrated superior performance over
traditional interpolation methods. As the network architectures for
DEM SR become increasingly complex, Zhang et al. (2021) proposed
the RSPCN model based on a recursive approach to reduce model
complexity. Additionally, in an effort to address the challenge of in-
sufficient capture of underlying feature dependencies in deep learning
aggregation processes, Han et al. (2023) introduced a DEM SR re-
construction method (GISR) with global information constraints. Yao
et al. (2024) employed implicit neural representation models for DEM
SR. The second approach involves leveraging Generative Adversarial
Networks (GANs) for DEM SR, such as D-SRGAN (Demiray et al.,
2021), ESRGAN model (Wu et al., 2021; Wu and Ma, 2020). The third
approach involves the use of Transformers for large-scale DEM SR (Li
et al., 2023; Wang et al., 2024), which has been proven to achieve
superior reconstruction results.
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In these researches, LR DEMs are typically obtained through a
predetermined degradation process from HR DEMs (e.g., Bicubic down-
sampling) and have not utilized paired DEM datasets from real-world
scenarios. The issue of DEM SR reconstruction in real-world scenarios
was first addressed (Wu et al., 2021). Additionally, researches have
often focused on the elevation features of DEMs. Zhou et al. (2021)
proposed the EDEM-SR model, which employs parallel convolutional
kernels with different receptive fields to form a dual convolutional
residual network, enabling better extraction and fusion of DEM fea-
tures. However, these approaches overlook the multiscale spatial and
terrain characteristics inherent in DEMs. Recent researches have shown
that utilizing deeper networks to convey terrain details can improve
DEM reconstruction accuracy (Lin et al., 2022). Considering the unique
spatial features of DEMs, Zhang et al. (2022) introduced a Terrain
Feature-Aware Super-Resolution (TfaSR) method by incorporating de-
formable convolution network (DCN) (Dai et al., 2017). Jiang et al.
(2023) considered terrain parameters by constructing loss functions
based on slope and aspect to constrain network learning and conver-
gence. Zhou et al. (2023a) proposed an MTF-SR method that integrates
raster terrain features in both input and loss functions and vector ter-
rain features in model output optimization. These researches leverage
terrain features and have been proven effective in optimizing DEM
SR models. In summary, existing DEM SR reconstruction research has
certain limitations.

(1) In terms of DEM dataset preprocessing, the objective is to ac-
quire paired DEM datasets. Current preprocessing methods in-
volve degrading HR DEMs to generate LR DEMs (Zhang and Yu,
2022), resulting in the model fitting the inverse operation of the
degradation process. This approach may not be entirely applica-
ble to real-world scenarios, limiting the model’s application in
real world applications.

(2) In terms of DEM SR models, current approaches typically use
the elevation values from LR DEM as single-channel inputs dur-
ing training to generate HR DEM. These models often consider
terrain feature information by using derived slope and aspect
values from DEM as loss functions to guide model convergence.
However, this method does not fully exploit the inherent terrain
features of DEM.

To this end, we reconstructed paired DEM datasets from various
ources and resolutions in real-world scenarios, resulting in a new
ataset called the Sichuan dataset. Additionally, we introduce shaded
elief images (SRIs) to guide the DEM SR task. SRIs simulate the
istribution of light and shadows on the earth’s surface, providing
n intuitive representation of terrain features from large ridges to
inor features such as ravines or terraces. Visualizing DEM as shaded

elief offers a clearer depiction of terrain characteristics, especially
alleys and ridgelines. Therefore, we proposed a terrain-feature-guided
pproach that supplies the network with richer terrain information.
RIs intuitively express terrain features, addressing the limitations of
ingle-input DEM images and providing synergistic benefits for training
eep learning models. The primary challenge lies in accurately selecting
consistent structure to extract and effectively integrate features from
oth SRIs and DEMs to guide DEM SR. We propose a novel DEM SR
ethod called the Attention-based Hierarchical Terrain Fusion (AHTF)

ramework, which leverages SRIs to guide DEM SR tasks. SRIs simulate
he distribution of light and shadow on the Earth’s surface, providing an
ntuitive representation of terrain elements ranging from large ridges
o small features such as valleys or terraces (Jenny et al., 2020).
xpressing DEMs as shaded relief can provide a clearer representation
f terrain features, particularly valleys and ridgelines (Dahal et al.,
022; Syzdykbayev et al., 2020; Lee et al., 2020). Therefore, this paper
roposes a terrain feature-guided approach aimed at providing richer
errain information to the network, thereby ensuring that the generated
R DEMs maintain refined local terrain features.
2

The proposed AHTF utilizes hierarchical convolutions to extract
elevation information from DEM and terrain information from SRIs.
However, integrating the elevation information from DEM with the
terrain features from SRIs to enhance DEM SR performance is a chal-
lenging task. A simple approach would be to add or concatenate the
features of both, but this method fails to effectively suppress similar
features between DEM and SRIs and promote the fusion of complemen-
tary features. Inspired by the Convolutional Block Attention Module
(CBAM) (Woo et al., 2018), which utilizes two sequential channel
and spatial attention modules to refine intermediate feature maps, we
introduce a novel Attention-based Feature Fusion Module (AFFM). It
effectively utilizes information from both channels for feature fusion.
Specifically, the module consists of a feature enhancement block and
a feature recalibration block, which are used to select valuable fea-
tures and unify the pattern similarity metrics of different appearance
features, respectively. Finally, multiple DCNs are connected to better
extract these fused deep features. Additionally, we further optimize the
collaborative loss function by considering visual effects in addition to
existing terrain parameter losses.

The contributions of this paper are summarized as follows:

(1) We constructed a real-world Shade-DEM SR dataset, the Sichuan
dataset. Unlike typical datasets where LR DEMs are downsam-
pled from HR DEMs, our dataset includes 90 m LR DEMs and
30 m HR DEMs derived from real-world scenarios. It also con-
tains SRIs generated from DEMs, totaling 2646 image pairs. This
dataset covers diverse and complex terrains, including moun-
tainous regions, valleys, depressions, and hills. The dataset is
available at https://doi.org/10.6084/m9.figshare.25590945.

(2) To the best of our knowledge, this is the first study to use SRIs
derived from DEMs as prior knowledge to guide the DEM SR
task. We designed the AHTF framework to effectively integrate
elevation information from DEMs and terrain information from
SRIs. The fusion module includes a feature enhancement block
to select valuable features and a feature recalibration block to
fuse diverse terrain features. Additionally, we optimized the loss
function from the perspectives of terrain analysis and visual
effects to achieve refined terrain feature representation.

(3) We conducted systematic experiments using three datasets with
different terrain types and resolutions. The proposed model was
compared against traditional Bicubic interpolation and existing
deep-learning based methods (EDSR, TfaSR, and SRFormer).
Both quantitative (including RMSE-elevation, RMSE-slope, and
RMSE-aspect) and qualitative results demonstrate that AHTF
outperforms state-of-the-art models. Compared to single DEM
image inputs, the SRI-guided method significantly enhances the
recovery and reconstruction of HR DEMs.

. Methodology

We propose an attention-based hierarchical terrain fusion frame-
ork (AHTF) for integrating terrain features to guide DEM SR tasks.
he overview of this framework is illustrated in Fig. 1. There are four
pecific modules, elaborated on in detail in this section.

.1. Hierarchical terrain feature extraction module

The module adopts a hierarchical approach to extract significant
eatures from the upsampled LR DEM and SRI. The proposed encoder
rchitecture consists of four sub-blocks, each comprising 3 × 3 convo-
utions followed by non-linear activation functions. We have selected
he Parametric Rectified Linear Unit (PReLU) (He et al., 2015) as the
ctivation function, which effectively addresses the overfitting issue
ithout increasing computational complexity. This leads to faster con-
ergence and lower error rates. By fully considering the non-linearity
f rectification units, it enables a more robust initialization approach.

https://doi.org/10.6084/m9.figshare.25590945
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Fig. 1. Overview of the proposed attention-based hierarchical terrain fusion framework (AHTF): (a) the hierarchical terrain feature extraction module, detailed description in
Section 2.1; (b) the attention-based feature fusion module, detailed description in Section 2.2; (c) the adaptive terrain features extraction module, detailed description in Zhang
et al. (2022); (d) the collaborative loss module, detailed description in Section 2.3. AHTF is a dual-branch input model, with LR DEM and the SRI derived from DEM as its inputs.
The generation process is described in Section 3.1.
This methodology allows us to train the AHTF network directly from
scratch. The formula for feature extraction is as follows:

𝐹 𝑖
𝑥 =

{

𝜎
(

𝑊 1
𝑥 ∗ 𝐷𝐿𝑅

𝑥 + 𝑏1𝑥
)

, 𝑖 = 1
𝜎
(

𝑊 𝑖
𝑥 ∗ 𝐹 𝑖−1

𝑥 + 𝑏𝑖𝑥
)

, 1 < i ≤ 4
(1)

where 𝑥 ∈ {𝐷𝐸𝑀,𝑆ℎ𝑎𝑑𝑒}, 𝑊 𝑖
𝑥 represents the convolutional kernels for

feature extraction in the 𝑖th layer, used respectively for DEM and SRI
feature extraction. 𝑏𝑖𝑥 denotes the bias terms, and 𝑖 denotes the number
of layers used for feature extraction. 𝜎 denotes the PReLU activation
function.

2.2. Attention-based feature fusion module

The intermediate feature maps extracted from the DEM and SRI
channels of the two encoders possess distinct semantic information,
making their fusion challenging. Simple concatenation and addition can
lead to insufficient feature fusion. Therefore, we propose an attention-
based fusion method, which enhances the representation capacity of
DEM and SRI feature maps, capturing their salient features while
suppressing unnecessary ones. Our proposed Attention-based Feature
Fusion Module (AFFM) comprises a feature enhancement block and
a feature recalibration block, as illustrated in Fig. 2. The formula for
feature fusion is as follows:

𝐹 𝑖
𝑓 = 𝐴𝐹𝐹𝑀𝑖

(

𝐹 𝑖
𝐷𝐸𝑀 , 𝐹 𝑖

𝑆ℎ𝑎𝑑𝑒
)

, 1 ≤ i ≤ 4 (2)

where 𝐹 𝑖
𝐷𝐸𝑀 and 𝐹 𝑖

𝑆ℎ𝑎𝑑𝑒 represent the hierarchical extracted DEM and
SRI features, 𝐹 𝑖

𝑓 denotes the fused feature, and 𝑖 indicates the number
of feature layers.

• Feature enhancement block: The encoder obtains hierarchical
feature maps for DEM and SRI. Inspired by Yu et al. (2019), gating
units are employed as the Feature enhancement block to enhance
features for each intermediate feature map of the streams. Then,
feature maps are fused based on the interdependence between the
two feature maps in different channels.

• Feature recalibration block: the intermediate feature maps of
each stream represent local descriptors. These statistics of de-
scriptors, including mean and maximum values, serve as effective
3

image representatives. Nonlinear and non-exclusive relationships
between the intermediate feature maps of DEM and SRI are
established through pooling, nonlinear activation, convolution,
and fully connected layers.

2.3. Collaborative loss module

To ensure the preservation of local terrain features during DEM SR,
we introduce a collaborative loss module. Grounded in terrain analysis
and visual perception, we incorporate RMSE of slope, elevation loss
(RMSE and 𝐿1 loss), and visual perception loss to optimize the training.

2.3.1. 𝐿1 loss
In SR tasks, the mean squared error (MSE) is commonly utilized

as the loss function. However, compared to MSE, the mean absolute
error (MAE) provides uniform penalization for outlier errors, thereby
aiding in preserving fine details during DEM SR. Consequently, we opt
to utilize the 𝐿1 loss to compute the error between corresponding pixel
positions in the SR and the HR. The calculation formula is as follows:

𝐿𝑋
1 =

∑

𝑖

|

|

|

𝑋(𝑖)
𝐻𝑅 −𝑋(𝑖)

𝑆𝑅
|

|

|

, 𝑋 = 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 (3)

where 𝑋(𝑖)
𝐻𝑅 and 𝑋(𝑖)

𝑆𝑅 respectively represent the values of a terrain
feature 𝑋 for the 𝑖th unit in the original HR DEM and the generated
SR DEM.

2.3.2. Root mean square error loss
Root Mean Square Error (RMSE) quantifies the magnitude of errors

between predicted and actual values. It effectively reflects the accuracy
of the SR DEM. RMSE can also be computed for slope generated from
terrain analysis, thereby optimizing local DEM terrain features. The
calculation formula is as follows:

𝐿𝑋 =

√

√

√

√

√

∑𝑛
𝑖=0

(

𝑋(𝑖)
𝐻𝑅 −𝑋(𝑖)

𝑆𝑅

)2

, 𝑋 ∈ {𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛, 𝑆𝑙𝑜𝑝𝑒} (4)
𝑅𝑀𝑆𝐸 𝑛
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Fig. 2. The Attention-based Feature Fusion Module consists of a feature enhancement block and a feature recalibration block. AFFM takes DEM and SRI features as inputs and
outputs the fused feature.
2.3.3. Visual perception loss
In addition to accounting for variations in DEM slope analysis, we

also consider the visual representation of the DEM. This is quantified
by computing MSE of SRI as part of the loss function.

𝐿𝑣𝑖𝑠𝑢𝑎𝑙 =
1
𝑛

𝑛
∑

𝑖=0

[

𝑋(𝑖)
𝐻𝑅 −𝑋(𝑖)

𝑆𝑅

]2
, 𝑋 = 𝑆ℎ𝑎𝑑𝑒 (5)

2.3.4. Collaborative loss
Considering both the accuracy of the generated DEM and the detail

recovery in the DEM super-resolution process, we employ elevation 𝐿1
loss and RMSE loss. Additionally, we integrate terrain feature losses,
including the RMSE loss of the slope and terrain feature loss. The trade-
offs between these losses are adjusted based on the scale differences of
the datasets and the complexity of the tasks. Static weighted learning
may constrain the convergence direction of the model, thereby affecting
the final performance of the model. Dynamic adjustment of the weights
between losses is necessary to better adapt to the DEM SR task. In-
spired by Kendall et al. (2018), we adopt uncertainty-based weighting
to achieve task weighting. The collaborative loss in our approach is
formulated as follows:

𝐿𝑡𝑜𝑡𝑎𝑙 =
∑

𝜏

(

1
2𝜎2𝜏

𝐿𝜏 (𝑊 ) + log 𝜎2𝜏

)

(6)

where 𝐿𝜏 (𝑊 ) ∈
{

𝐿𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛
1 , 𝐿𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛

𝑅𝑀𝑆𝐸 , 𝐿𝑆𝑙𝑜𝑝𝑒
𝑅𝑀𝑆𝐸 , 𝐿𝑣𝑖𝑠𝑢𝑎𝑙

}

. 𝜎𝜏 is the learn-
able weight parameter. 𝑙𝑜𝑔𝜎2𝜏 is used as the regularization method
to alleviate the influence of parameters with small weights, which
optimizes numerical stability during the optimization process.

3. Experiments

3.1. DEM dataset

We selected two publicly available DEM datasets, Austria and
TFaSR30. Considering that their LR DEMs are obtained through a
certain degradation process from HR DEMs, this may result in the
model fitting the inverse operation of the degradation process, thereby
limiting its applicability in real-world scenarios. Hence, we constructed
a more challenging dataset — the Sichuan Dataset — comprising pairs
of DEMs from different sources.

These datasets consist of pairs of LR DEM and HR DEM images. We
generate SRIs from the LR DEMs to guide DEM SR. Fig. 3 illustrates
the representation of DEMs expressed as shaded relief, demonstrating
its ability to articulate terrain features more clearly. For the hillshading
4

process, we employ the equation to generate SRIs (Burrough et al.,
2015):

𝐻𝑖𝑙𝑙𝑠ℎ𝑎𝑑𝑒 = 255.0 ⋅ (cos𝑍𝑒𝑛𝑖𝑡ℎ𝑟𝑎𝑑 ⋅ cos𝑆𝑙𝑜𝑝𝑒𝑟𝑎𝑑
+ sin𝑍𝑒𝑛𝑖𝑡ℎ𝑟𝑎𝑑 ⋅ sin𝑆𝑙𝑜𝑝𝑒𝑟𝑎𝑑 ⋅ cos(𝐴𝑧𝑖𝑚𝑢𝑡ℎ𝑟𝑎𝑑 − 𝐴𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑑 ))

(7)

where 𝑆𝑙𝑜𝑝𝑒𝑟𝑎𝑑 , 𝐴𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑑 , 𝑍𝑒𝑛𝑖𝑡ℎ𝑟𝑎𝑑 , and 𝐴𝑧𝑖𝑚𝑢𝑡ℎ𝑟𝑎𝑑 represent slope,
aspect, solar zenith angle, and solar azimuth angle, respectively. For
computational convenience, we set 𝑍𝑒𝑛𝑖𝑡ℎ𝑟𝑎𝑑 and 𝐴𝑧𝑖𝑚𝑢𝑡ℎ𝑟𝑎𝑑 to 45 and
315, respectively.

Furthermore, due to the wide range of values in DEM, for better
learning optimization by the model, we normalize the input DEM
and SRI separately. All data values are scaled between [−1, 1]. The
normalization process is as follows:

𝑌 = 2 ×
𝑌origin − 𝑌min

𝑌max − 𝑌min
(8)

where 𝑌origin represents each original DEM data or SRI data, with 𝑌max
and 𝑌min denoting the maximum and minimum values of each dataset,
respectively. Next, the detailed introduction of the three datasets used
in the experiments follows.

3.1.1. Sichuan dataset
To evaluate the robustness of the proposed method, we selected the

western region of Sichuan, China, characterized by distinctive ridges
and valleys, as the study area (see Fig. 4(a)). We reconstructed a more
challenging Shaded-DEM SR dataset, called Sichuan dataset. The HR
DEM and LR DEM were sourced from SRTM1 (30 m) and SRTM3 (90 m)
data, respectively, both acquired by the Space Shuttle Endeavour. Pre-
processing steps, including registration and cropping, were performed
to obtain well-paired DEM image pairs. The study area features an
elevation range of up to 7000 m, with terrain characteristics illustrated
in Fig. 4(b). The western part of the study area consists of highly rugged
mountains and valleys, while the eastern part encompasses the Sichuan
Basin, including lowlands and hills. This diverse terrain poses signifi-
cant challenges to the generalization capability of the super-resolution
task. The LR DEM and HR DEM were divided into non-overlapping sub-
images of 85 × 85 and 255 × 255 pixels, resulting in 2646 image pairs.
These pairs were split into training and testing sets with an 8:2 ratio.
sub-figures (c) and (d) display the elevation distributions of the training
and testing sets, respectively. We have made the data open source and
it can be obtained at https://doi.org/10.6084/m9.figshare.25590945.

https://doi.org/10.6084/m9.figshare.25590945
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Fig. 3. The process of representing a discrete data-based DEM as SRI involves. Overlaying SRI on the DEM representation allows for a clearer depiction of terrain features,
especially ridge lines and valley lines.
Fig. 4. Visualization of the experimental Sichuan datasets. (a) The study area; (b) Terrain features of the study area; (c) and (d) Elevation distribution maps for the training and
testing datasets.
3.1.2. Austria dataset
The Austria dataset, available at https://opendem.info/superResolu

tion.html, is constructed using airborne LiDAR scanners. It consists of
10 m DEM data from the Austria region as the HR DEM, while the LR
DEM is obtained by downsampling the 10 m data (300 × 300 pixels) to
30 m (100 × 100 pixels) using nearest-neighbor interpolation, followed
by upsampling back to 30 m using trilinear interpolation. The dataset
comprises 2003 pairs for the training set and 101 pairs for the test set,
with DEM data selected from two distinct regions for both training and
testing. The elevation distribution of this region is depicted in Fig. 5,
shaped by river and glacier erosion.

3.1.3. TfaSR30 dataset
The TfaSR30 dataset is available from https://doi.org/10.6084/m9.

figshare.19225374. It consists of two distinct areas: Train Area and
Test Area, which are geographically adjacent but non-overlapping. The
dataset is provided in the format of 10 m HR DEM (3528 × 3528
pixels) and 30 m LR DEM (1176 × 1176 pixels). To accommodate
5

the two streams input of AHTF, reprocessing was conducted. SRI was
generated from the 30 m LR DEM, and LR, HR, and SRI were grouped
and cut into fixed-size sub-DEMs (63 × 63 pixels and 21 × 21 pixels)
without overlap. Fig. 6 illustrates their elevation distribution and the
data distribution of the train and test sets. The terrain features of this
area include mountains, ridges, valleys, and rivers.

3.2. Experimental setup

We selected the interpolation method BiCubic, the EDSR (Xu et al.,
2019) based on residual blocks, the TfaSR (Zhang et al., 2022) con-
sidering terrain factors, and the state-of-the-art SRFormer (Zhou et al.,
2023b) based on transformer as the comparative methods. It should be
noted that the methods from related researches in 2024 have not been
open-sourced. Therefore, we compared with the state-of-the-art models
that have already been open-sourced. The deep learning methods were
implemented using the PyTorch framework and trained on an NVIDIA
Quadro P6000 24 GB graphics card. All four deep learning models
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Fig. 5. Visualization of the experimental Austria datasets. (a) and (b) depict the terrain features of the training and testing areas, respectively; (c) and (d) show the elevation
distribution maps for the training and testing datasets.
Fig. 6. Visualization of the experimental TfaSR30 dataset. (a) and (b) depict the terrain features of the training and testing areas, respectively; (c) and (d) show the elevation
distribution maps for the training and testing datasets.
used the same hyperparameters with the batch size as large as possible.
During training, the Adam optimizer was chosen for 200 epochs with
a learning rate of 0.0001, and the loss function was the Collaborative
loss described in Section 3.4. It is worth noting that, for consistency,
TfaSR differed from the original research (Zhang et al., 2022) by
omitting the loss of the near-stream area segmentation. For compu-
tational efficiency, a lightweight version of SRFormer was selected.
According to the research (Zhou et al., 2023b), SRFormer-light can
6

significantly reduce computational costs while maintaining almost the
same accuracy. Additionally, batch sizes were set to 10, 128, and 12
for input image sizes of 100×100, 21×21, and 85 × 85, respectively.

Additionally, RMSE-elevation is employed to measure the changes
in the DEM generated during each epoch to assess the training per-
formance of the model. Three terrain indices, namely RMSE-elevation,
RMSE-slope, and RMSE-aspect, are selected as evaluation metrics for
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terrain reconstruction results. Lower RMSE values indicate better per-
formance.

3.3. Training procedure

In the subsection, the training details of different methods are
described, including EDSR, TfaSR, SRFormer, and the proposed AHTF.
The RMSE of the recovered elevation during the training process on
train sets of the Austria, TfaSR30, and Sichuan dataset are illustrated
in Fig. 7. It is noteworthy that the average RMSE elevation values
produced by the Bicubic method for the three training datasets are
3.142 m, 2.919 m, and 32.947 m, respectively. Overall, the RMSE
elevation gradually decreases over 200 epochs for all four models.
However, EDSR, TfaSR, and SRFormer exhibit higher RMSE in the
initial 1–10 epochs due to random initialization of network weights, re-
sulting in significant deviations between initial predictions and ground
truth. In contrast, AHTF utilizes upsampling on LR DEM and features
extracted by the Adaptive Terrain Features Extraction Module, followed
by skip connections to generate the final SR results. This effectively
avoids the aforementioned issue, giving AHTF an advantage in the early
stages of training.

From Fig. 7(a)(d)(g), it can be observed that after 50 epochs of train-
ing, there is not much decrease in RMSE for all three datasets. However,
when the training curves for epochs 50–200 are shown in subplots
(b)(e)(h), it can be seen that the RMSE for all three models continues to
decrease, indicating no overfitting. AHTF significantly outperforms the
other three models, with TfaSR exhibiting better convergence compared
to EDSR, especially on the Sichuan dataset, where TfaSR approaches
the performance of AHTF. This demonstrates the effectiveness of the
Adaptive Terrain Features Extraction Module utilizing deformable con-
volutions. It is worth noting that the RMSE curves of AHTF, TfaSR,
and EDSR models exhibit smaller oscillations compared to the larger
oscillations seen in the TfaSR model. This instability in the TfaSR model
is attributed to the smaller batch size during training. SRFormer shows
rapid convergence in the initial 1–100 epochs but stabilizes between
150–200 epochs, likely due to the limited size of the dataset. This
indicates that Transformer requires a larger dataset compared to CNN
for DEM SR tasks.

Furthermore, subplots (c)(f)(i) illustrates the RMSE curve of AHTF
throughout the entire training period. It can be observed that AHTF
demonstrates consistently stable performance with a steady decrease in
RMSE. This stability is attributed to: (1) the feature fusion performed
by the Attention-based feature fusion module, which integrates DEM
and SRI features while preserving local terrain characteristics, and (2)
the collaborative loss proposed to optimize training.

3.4. Inference results

3.4.1. Overall results
In this subsection, all trained models are applied to three test

datasets, and the comparison results are listed in Table 1. From the
statistical results, it can be seen that our proposed AHTF outperforms
all other methods in terms of all three terrain evaluation metrics, not
only for the Austria and TfaSR30 datasets for the task of recovering
from 30 m to 10 m resolution but also for the Sichuan dataset for the
task of recovering from 90 m to 30 m resolution. However, it should
be noted that all five models perform less effectively on the Sichuan
dataset compared to the other two datasets. This is because the LR and
HR DEM of the Sichuan dataset are derived from two different real
measurement data sources, and the experimental area has significant
variations in elevation, posing challenges for the DEM SR task.

Additionally, it can be observed that deep learning methods gener-
ally exhibit more satisfactory performance and greater stability com-
pared to traditional interpolation methods (BiCubic), highlighting the
superiority of deep learning methods for DEM SR tasks. As the latest
transformer-based SR model, SRFormer achieves better results than
7

EDSR for DEM SR tasks. Interestingly, while SRFormer exhibits slightly
lower training curve values than TfaSR on the Austria dataset, seen
from Fig. 7(b), its performance on the test set is not as robust as TfaSR.
This could be attributed to overfitting of SRFormer, as it relies on a
transformer-based architecture and may require a larger dataset for
DEM SR tasks. EDSR and SRFormer do not consider the influence of
terrain features. In contrast, TfaSR, which incorporates terrain feature-
awareness, demonstrates competitive performance, second only to our
AHTF model. TfaSR effectively integrates deep residual modules and
DCN modules to extract depth and adaptive terrain features, thereby
enhancing terrain feature perception through its loss function. Building
upon these insights, AHTF guides the DEM SR network with SRI,
facilitating the fusion of multiple terrain and elevation features. Fur-
thermore, AHTF optimizes the TfaSR loss function by incorporating
terrain visual loss. Consequently, AHTF offers a more accurate and
reliable solution for DEM SR tasks.

3.4.2. Error analysis
To gain a deeper understanding of the results, we conducted a

quantitative analysis by presenting boxplots of overall errors for the
five models. Fig. 8 illustrates the distribution of overall errors for
each model across the three datasets. By comparing the upper and
lower boundaries of each box, we can assess the dispersion of model
predictions. Notably, the boxplots for AHTF, SRFormer, and TfaSR
appear narrower, indicating relatively stable predictions and greater
model robustness. In contrast, the boxplots for EDSR and BiCubic are
wider, suggesting higher data dispersion and increased uncertainty in
predictions. Furthermore, we observe a wider span of boxplot widths
on the Sichuan test dataset, indicating that the Sichuan dataset presents
greater challenges for DEM SR tasks due to its unique data sources
and terrain characteristics. Finally, by computing the average RMSE
for each model, we derived the performance curves for prediction
accuracy. Considering the comprehensive analysis results, our AHTF
demonstrates the capability to recover most of the DEM with high
precision.

3.4.3. Qualitative assessment
(1) Elevation assessment

We selected examples of DEMs from three datasets to visu-
ally evaluate the reconstructed terrain. Fig. 9(a), (c), and (e)
display the SR DEMs generated by different methods. At first
glance, all methods are capable of restoring the LR DEM to a
higher resolution version. However, there are still significant
differences in detail among each generated DEM. To visually
display the differences, we subtracted the original HR DEM
from the SR DEMs to obtain elevation error maps, as shown
in subfigures (b), (d), and (f), and represented the distribution
of the difference results using line charts. It can be observed
that compared to other models, our AHTF model exhibits a
more concentrated distribution of errors around zero, with fewer
errors distributed in larger error intervals, consistent with the
evaluation indicator results of RMSE-elevation in Table 1. In
contrast, the elevation error map of BiCubic shows large areas
of blue and red, indicating a distribution of errors in larger
numerical intervals. Additionally, the SRFormer model presents
a predominantly red elevation error map on the Austria dataset,
while the TfaSR model presents a predominantly blue elevation
error map on the Sichuan dataset, as evidenced by the right-
skewed or left-skewed curves in the error distribution plots,
indicating a bias in the learned elevation features. Furthermore,
from the error maps, it can be observed that most errors occur
in areas with significant terrain fluctuations such as rivers and
valleys, where the error maps appear more red or blue. However,
our AHTF model exhibits lighter colors in these areas, indicating
that our designed modules are able to more accurately preserve

the terrain trends.
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Fig. 7. Training details of the AHTF method and other SR methods on three train datasets.
Table 1
RMSE evaluation results tested on the three datasets.
Dataset Model RMSE-Elevation (m) RMSE-Slope (◦) RMSE-Aspect (◦)

Austria
(30-10 m)

BiCubic 5.371 6.293 105.665
EDSR 4.027 2.188 63.527
TfaSR 1.814 1.433 52.035
SRFormer 1.859 1.516 53.425
AHTF (ours) 1.471 1.329 50.398

TfaSR30
(30-10 m)

BiCubic 3.290 1.202 49.542
EDSR 1.904 0.805 39.752
TfaSR 1.776 0.795 40.914
SRFormer 1.791 0.868 39.985
AHTF (ours) 1.679 0.763 38.579

Sichuan
(90-30 m)

Bicubic 32.106 13.870 106.479
EDSR 16.770 4.375 55.287
TfaSR 15.808 4.143 53.688
SRFormer 16.526 4.331 55.172
AHTF (ours) 15.470 4.111 52.723
(2) Slope assessment
Additionally, we compared the derived slope results, as shown
in Fig. 10. It can be observed that a majority of errors manifest
in regions with significant slope distributions, as highlighted by
the black circles in the figure. These regions typically represent
intricate terrain features such as peaks and valleys, rendering
the visual interpretation more intuitive compared to Fig. 9.
Conversely, in areas characterized by smaller slopes—indicative
of less complex terrain—the reconstruction tends to be more ac-
curate. Hence, the reconstruction of complex terrain areas poses
a notable challenge for DEM SR. Within these complex regions,
8

our AHTF model tends to exhibit colors tending towards yellow
on the error map. This indicates a precise preservation of terrain
trends, facilitated by the guidance provided by SRI for DEM SR,
which offers more intricate terrain features. Interestingly, the
error distribution for BiCubic shows an increasing concentration
of errors in the negative value range. This can be attributed
to the loss of elevation information inherent in interpolation
methods, leading to generated slopes that are smaller than the
original ones. In contrast, our method yields smaller error values
compared to other methods, with a higher concentration of
errors in the (−1, 1) range and fewer errors in other ranges. This
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Fig. 8. Comparison of error distribution of different DEM SR models tested on three datasets.
Table 2
The 𝐼𝑂𝑈𝑠𝑡𝑟𝑒𝑎𝑚 results for the extracted stream networks using different methods in study
areas (a)-(e).
𝐼𝑂𝑈𝑠𝑡𝑟𝑒𝑎𝑚 (%) (a) (b) (c) (d) (e)

Bicubic 54.54 56.89 58.56 54.35 52.33
EDSR 75.67 78.54 76.33 76.52 77.15
TfaSR 80.60 81.46 82.92 82.88 84.70
SRFormer 78.46 80.63 79.64 83.07 81.68
AHMF(ours) 83.24 85.56 82.57 84.45 86.01

serves to validate that AHTF is more adept at restoring complex
terrain areas.

(3) Aspect assessment

Fig. 11 presents the aspect results derived from the SR DEMs gener-
ated by different models. Aspect denotes the direction of the maximum
change in elevation values. Upon visual inspection of the aspect results,
it becomes apparent that our method excels in restoring results most
akin to the original DEM. This indicates that AHTF can preserve global
trends, whereas other methods may disrupt these trends, particularly
the results based on BiCubic, which lose a significant amount of terrain
detail. TfaSR and SRFormer relatively maintain terrain trends, suggest-
ing that deep learning methods can learn some relevant knowledge.
Notably, terrain-aware TfaSR surpasses other methods. This assertion
is further substantiated by the statistical findings presented in Table 1.

3.4.4. Stream network extraction
The position and morphology of stream networks derived from DEM

are directly related to the terrain. Correctly representing river networks
requires not only adjusting the elevation values of individual pixels
but also correcting the relative spatial positions of pixels with different
elevation values. Therefore, to assess the extent to which DEM SR pre-
serves detailed terrain information, we extracted stream networks from
DEMs reconstructed using different methods. The reference streamlines
9

used for comparison were obtained vector hydrology layers from the
open-source platform OpenStreetMap (OSM). These layers were aligned
with the DEM through registration correction, ensuring a closer rep-
resentation of real-world terrain reconstruction applications. The finer
the DEM reconstructed by the SR methods, the better it captures terrain
features, resulting in a stream network that more closely matches
the reference streamlines. Taking a portion of the Austria dataset as
an example, the results extracted by the five models are depicted in
Fig. 12. The stream network extracted by AHTF closely matches the
reference stream network at both main and tributary confluences. In
contrast, the results from EDSR and BiCubic show larger deviations
from the reference stream network, as shown in Fig. 12(e)(d). To more
intuitively reflect the alignment between the extracted stream networks
and the actual river streams, we introduce the Intersection over Union
(IoU) of the stream buffer area. The calculation formula is presented as
follows:

𝐼𝑂𝑈𝑠𝑡𝑟𝑒𝑎𝑚 =
𝐴𝑟𝑒𝑎𝑆𝑅 ∩ 𝐴𝑟𝑒𝑎𝐺𝑇
𝐴𝑟𝑒𝑎𝑆𝑅 ∪ 𝐴𝑟𝑒𝑎𝐺𝑇

× 100% (9)

where 𝐴𝑟𝑒𝑎𝑆𝑅 denotes the buffer area of the extracted stream network
from different DEM SR methods, and 𝐴𝑟𝑒𝑎𝐺𝑇 represents the buffer area
of the reference streamlines. We set the buffer width for the stream
lines to 30 m. The 𝐼𝑂𝑈𝑠𝑡𝑟𝑒𝑎𝑚 results for the extracted stream networks
using different methods in study areas (a)–(e) are shown in Table 2.
Our AHTF achieves higher IOU scores, indicating a better alignment
between the extracted and actual river lines. This superior performance
of AHTF in generating more accurate stream networks is primarily due
to its effective integration of terrain features from shaded reliefs and
its enhanced control over these features.

4. Discussion

Observing the results from Section 3.4, it is evident that the per-
formance of the AHTF model is optimal across all three datasets, with
particularly stable performance on the Austria test dataset. Therefore,
the experiments in this subsection are conducted on the Austria dataset
for testing purposes.
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Fig. 9. The comparison of SR DEM results generated by different models, based on selecting one DEM example from three datasets. Rows (a), (c), and (e) present the visual
representations of SR DEM generated, while rows (b), (d), and (f) display the error maps derived from the difference between the SR DEM within the red-bordered area and the
original HR DEM elevation values. In the error maps, colors closer to red or blue indicate larger errors, while colors closer to yellow indicate smaller errors. The error distribution
results are shown on the right side. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 3
RMSE evaluation results with and without inputting SRI.
Inputs Epoch RMSE-Elevation (m) RMSE-Slope (◦) RMSE-Aspect (◦)

LR DEM + SRI 100 1.559 1.400 51.317
200 1.471 1.329 50.398

LR DEM + LR DEM 100 1.534 1.389 50.905
200 1.528 1.386 50.838
4.1. The impact of terrain guidance

DEM contains single-channel elevation information, while SRI can
better highlight the terrain features of DEM. AHTF guides the DEM SR
task with SRIs, enabling the network to learn richer terrain features and
thereby restore more detailed DEMs. To demonstrate this conclusion,
we conducted the experiment with a set of dual inputs, both LR DEM,
and the results are shown in Table 3. The metrics RMSE-elevation,
RMSE-slope, and RMSE-aspect are all inferior to the results obtained
when using LR DEM and SRI as inputs. This indicates that SRI can
complement DEM features, allowing the model to recover more terrain
details.

4.2. The impact of the AFFM module

To validate the effectiveness of the fusion method employed by
AHTF in integrating SRI and DEM features, we replaced the AFFM
module with simple multi-feature addition and concatenation, denoted
as 𝐴𝐻𝑇𝐹𝑎𝑑𝑑 and 𝐴𝐻𝑇𝐹𝑐𝑎𝑡, respectively. To eliminate other influences,
all parameters remained the same as in Section 3.2. The experimental
results are listed in Table 4. It can be observed that the results of
using the AFFM module outperform those of 𝐴𝐻𝑇𝐹 and 𝐴𝐻𝑇𝐹
10

𝑎𝑑𝑑 𝑐𝑎𝑡
Table 4
RMSE evaluation results of the fusion method in integrating SRI and DEM features.

Epoch RMSE-Elevation (m) RMSE-Slope (◦) RMSE-Aspect (◦)

𝐴𝐻𝑇𝐹𝑎𝑑𝑑
100 1.659 1.437 51.818
200 1.520 1.381 51.114

𝐴𝐻𝑇𝐹𝑐𝑎𝑡
100 1.552 1.403 51.364
200 1.486 1.354 50.652

AHTF 100 1.559 1.400 51.317
200 1.471 1.329 50.398

across all three evaluation metrics, demonstrating the effectiveness of
the attention-based feature fusion module.

To further assess the efficacy of the AFFM module in DEM SR, we
visualized the input and output feature maps of addition, concatenation
fusion, and AFFM in Fig. 13. Taking the first row as an example, the
feature maps of DEM and SRI extracted by the Hierarchical terrain
feature extraction module (subplot (a) and subplot (f)) were fused using
Eq. (2) to obtain subplot (c). From Fig. 13, it is observed that both
addition and concatenation fusion methods tend to emphasize texture
features represented by SRI while overlooking elevation information.
Particularly, the addition fusion method more significant bias towards
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Fig. 10. The comparison of slope derived from SR DEM generated by different models, based on the DEM examples shown in Fig. 9. Rows (a), (c), and (e) present the corresponding
visual representations of slope, while rows (b), (d), and (f) display the error maps obtained from the difference between the SR slope values and the original HR slope values. In
the error maps, colors closer to red or blue indicate larger errors, while colors closer to yellow indicate smaller errors. The error distribution results are shown on the right side.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
SRI, evident from the maximum value of the feature map being close
to that of the SRI map and significantly different from the DEM feature
map. However, AFFM effectively balances the elevation information
extracted from the DEM images and the terrain information extracted
from the SRI. This is primarily due to the attention mechanism em-
ployed in AFFM, which enhances feature representation capability
while leveraging the nonlinear and non-exclusive relationships between
the two feature maps. The analysis conclusions are consistent with the
quantitative results in Table 4. Therefore, the Attention-based Feature
Fusion Module facilitates better terrain recovery by the model.

4.3. The impact of collaborative loss

In this subsection, the influence of different components of the
collaborative loss function is investigated, as shown Table 5. Three
scenarios are considered: Loss1, which accounts for RMSE loss for
elevation values only; Loss2, including RMSE loss for elevation values
and L1 loss; and Loss3, where terrain feature loss is excluded. The ex-
perimental outcomes, depicted in Eq. (6), reveal that incorporating L1
loss yields superior performance, potentially due to its lower sensitivity
to errors. Moreover, considering the RMSE of slope allows the model to
optimize for reduced errors. The inclusion of slope loss, derived from
DEM data, notably reduces RMSE-slope for the test set. Importantly,
by integrating both terrain analysis and visual effect considerations,
selecting RMSE of slope, elevation loss (RMSE and L1 loss), and ter-
rain visual loss collectively minimizes errors, thereby preserving local
terrain features in the DEM SR task.
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Table 5
RMSE evaluation results of collaborative loss.

Loss RMSE-Elevation (m) RMSE-Slope (◦) RMSE-Aspect (◦)

Loss1 1.484 1.348 50.753
Loss2 1.473 1.347 50.609
Loss3 1.476 1.330 50.419
Collaborative Loss 1.471 1.329 50.398

Table 6
The comparison of model complexity on different models.

Params(M) FLOPs(G)

EDSR 1.552 124.324
TfaSR 1.275 102.144
SRFormer 1.181 121.141
AHTF (Ours) 1.320 104.228

4.4. The assessment of model complexity

We selected a LR DEM input size of 100 × 100 and an upsampling
factor of 3. We used the number of multiply-accumulate operations
(MACs) and the number of parameters (Params) as metrics for quantita-
tive comparison between AHTF and three other deep learning models,
shown in Table 6. It is important to note that AHMF requires two input
streams (DEM and SRI), yet its computational complexity does not
significantly increase compared to single-input models. Moreover, con-
sidering that reconstruction accuracy is more critical than efficiency for
DEM SR (Zhang and Yu, 2022), and most downstream geo-spatial tasks
do not require real-time updates, our AHMF achieves more satisfactory
results.
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Fig. 11. The comparison of aspect derived from SR DEM generated by different models, based on the DEM examples shown in Fig. 9. The right side presents the distribution of
error maps obtained from the difference between the SR aspect values and the original HR aspect values.

Fig. 12. The comparison of river extraction from SR DEMs produced by different methods.
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Fig. 13. Visualization of feature maps, exemplified by a region of the Austria dataset. (a) and (f) depict feature maps extracted from the DEM images; (b) and (g) represent feature
maps extracted from the SRIs; (c), (d), and (e) show the feature maps obtained by passing the first layer (first column) through the proposed AFFM, addition, and concatenation,
respectively; (h), (i), and (j) correspond to the feature maps of the second layer (second column).
.

4.5. Limitations

Through the integration of SRI and DEM for multi hierarchical fea-
ture fusion, as well as the refinement of loss functions, our AHTF model
has shown promising results in DEM SR. However, several limitations
persist.

Firstly, the model exhibits insufficient robustness in the rugged
terrain of the real-world Sichuan dataset. Therefore, acquiring more
DEMs of different resolutions through open-source means is one method
to enhance the model’s robustness.

Secondly, the model guides DEM SR tasks with SRI to supplement
terrain features. With the diverse development of measurement meth-
ods, consideration can also be given to integrating multi-source remote
sensing data. For example, using Sentinel images to guide DEM SR. Be-
yond raster data, vector information such as open-source river network
data should also be considered. This will pose greater challenges for
multi-source data fusion methods.

Thirdly, the upsampling factor of the method is fixed rather than
arbitrary, which may limit the potential applications of our approach.
This aspect will be addressed in our forthcoming research endeavors.

5. Conclusion

In this paper, we introduce SRIs derived from DEMs to guide the
DEM SR task for the first time. We propose a novel Attention-based
Hierarchical Terrain Fusion framework for this purpose. AHTF inte-
grates four specially designed modules. Initially, elevation and terrain
features are extracted from LR DEM and SRI using multi-hierarchical
convolutions. Subsequently, an Attention-based feature fusion module
thoroughly fuses these features. Then, an adaptive terrain feature ex-
traction module is employed to identify and extract multi-scale terrain
features. Finally, the loss function is optimized from the perspectives of
terrain analysis and visual effects. The effectiveness of these modules
is systematically validated. Testing results on multiple datasets with
different resolutions demonstrate the superiority of our approach over
methods solely relying on DEM images. In addition, the superiority
of AHTF is demonstrated through evaluations and visualizations of SR
results in diverse terrains. As remote sensing data becomes more acces-
sible, our research will provide a reference for the fusion of multiple
data sources. In the future, we will further explore the feasibility of
guiding DEM SR tasks with multi-source data to generate more accurate
global HR terrain products.
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